Micro solid oxide fuel cells: a new generation of micro-power sources for portable applications

Year
2017
Type(s)
Author(s)
F. Chiabrera, I. Garbayo, N. Alayo, A. Tarancón
Source
Proceedings of SPIE, 10246, 2017.
Url
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10246/1/Micro-solid-oxide-fuel-cells--a-new-generation-of/10.1117/12.2269454.short?SSO=1
BibTeX
BibTeX

Abstract

Portable electronic devices are already an indispensable part of our daily life; and their increasing number and demand for higher performance is becoming a challenge for the research community. In particular, a major concern is the way to efficiently power these energy-demanding devices, assuring long grid independency with high efficiency, sustainability and cheap production. In this context, technologies beyond Li-ion are receiving increasing attention, among which the development of micro solid oxide fuel cells (μSOFC) stands out. In particular, μSOFC provides a high energy density, high efficiency and opens the possibility to the use of different fuels, such as hydrocarbons. Yet, its high operating temperature has typically hindered its application as miniaturized portable device. Recent advances have however set a completely new range of lower operating temperatures, i.e. 350-450°C, as compared to the typical <900°C needed for classical bulk SOFC systems. In this work, a comprehensive review of the status of the technology is presented. The main achievements, as well as the most important challenges still pending are discussed, regarding (i.) the cell design and microfabrication, and (ii.) the integration of functional electrolyte and electrode materials. To conclude, the different strategies foreseen for a wide deployment of the technology as new portable power source are underlined.
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.